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Highlights

• European stock and carbon prices are found to co-move.

• The higher a firm’s carbon costs, the lower its stock return when carbon prices rise.

• For a firm with carbon costs of 10% of revenues, a 1% carbon price rise is linked to a stock price

drop of 0.05%.

• Free emission allowances are found not to impact the stock/carbon price co-movement.

• This relationship can provide an incentive for firms to decarbonize.

Abstract

Financial markets can support the transition to a low-carbon economy by redirecting funds from

highly emissive to clean investments. We study whether European stock markets take carbon prices into

account in company valuations and to what degree they discriminate between firms with different carbon

intensities. Using a novel dataset containing stock prices and carbon intensities of 338 European publicly

traded companies between 2013 and 2021, we find a strongly and statistically significant relationship

between weekly carbon price changes and stock returns. Crucially, this relationship depends on firms’
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carbon intensity: the higher the carbon costs a firm faces, the poorer its stock performance during the

periods of carbon price increases. Emissions that firms cover with free allowances however do not impact

this relationship, illustrating how both carbon pricing and disclosures are needed for financial markets

to support climate change mitigation. The relationship we identify can provide an incentive for firms to

decarbonize. We argue in favour of more ambitious carbon pricing policies, as this would strengthen the

stock-market incentive channel while causing only limited financial stability risk for stocks.

Keywords: European Union Emissions Trading Scheme; Carbon price; Stock price valuation; Climate

Finance; Climate Change Mitigation; Multifactor Market Model

JEL classification: G12; G14; Q53; Q54; Q54

1 Introduction

The financial sector has an important role to play in supporting the transition to a low-carbon economy.

According to International Energy Agency estimates (International Energy Agency, 2021), annual global

investment in the energy sector alone will need to triple by 2030 to around $4 trillion to reach net zero

emissions by 2050. To achieve this ambitious target, financial markets should be made to increasingly

channel funding towards sustainable projects. Funds tend to flow towards those investments that provide

the highest return for a given level of risk. Therefore, any policy that either lowers returns of highly emissive

ventures with respect to less polluting ones or provides transparency on the higher risks they face, will

contribute to a more environmentally desirable allocation of resources.

Two key policies are generally put forward to achieve that goal. First, carbon pricing initiatives (World

Bank, 2021), which aim to internalize the costs of greenhouse gas emissions, reduce the relative profitability

of highly emissive firms. But polluting firms also face higher risks from possible additional regulation that

might impact their future profitability. The second kind of proposed policy is transparency initiatives that

increase the availability of high-quality, comparable, emissions-related data (NGFS, 2022) that allow financial

markets to adjust prices to reflect these risks. These two policies – carbon pricing and data disclosure – are

mutually reinforcing in pushing financial markets to support the transition to a low-carbon economy.

The European Union (EU) has considerably advanced on both fronts in recent years. Transparency

was greatly enhanced by the publication of the EU taxonomy and of the EU green bond standard. The

work on the Corporate Sustainability Reporting Directive (CSRD) addressed the gap in unified reporting

standards. Taken together, these instruments improve the availability of information, standardize green

financing procedures and considerably reduce the room for greenwashing. In parallel, the rising price of

carbon within the EU Emissions Trading System (EU ETS) has increased carbon costs for polluting firms.

In this paper, we illustrate the mutually reinforcing effect of carbon pricing and increased climate data

transparency by analyzing whether stock markets penalize the stock prices of the most carbon-intensive

companies amid rising carbon costs.
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The EU ETS is a carbon pricing mechanism set up in the EU in 2005. Its rules were updated several

times1 and it gradually became a cornerstone of the European climate policy. The EU ETS is a “cap and

trade” scheme whereby a limit is set on the total amount of greenhouse gases that can be emitted by the

participating installations and the equivalent amount of tradeable allowances are issued. The system covers

electricity and heat generation, energy-intensive industries, and partially the aviation sector. Every year,

the installations from these sectors need to surrender allowances for the greenhouse gases that they emit. A

fraction of these allowances is allocated to the installations for free,2 while the residual needs to be covered

with allowances purchased in public auctions or on the secondary market. In this paper, we focus on the

years 2013 to 2021, when the system had already matured into a well-functioning emissions market.

The EU ETS is primarily a carbon pricing mechanism that reflects the current and future supply and

demand of emissions allowances. At the same time, the reporting on the functioning of the system provides

the market with data on emissions, free allocation of allowances, and transactions. This audited and com-

parable information about firms’ carbon intensity is freely accessible to market participants. Thus, the EU

ETS serves both as a carbon pricing and as a transparency tool that partially3 addresses the lack of reliable

and comparable climate-related information.

Our paper explores the case of the EU ETS with the aim to measure the implications for the stock

market of a higher carbon price and increased availability of climate-related data. Specifically, we assess

the extent to which stock markets consider carbon price dynamics and firms’ carbon intensities. If stock

markets were found to discriminate against highly emissive firms, this could imply the existence of a stock

market incentive channel for shareholders to decarbonize firms’ operations and accelerate the transition to a

low-carbon economy. To conduct this analysis, we have compiled a unique dataset on free and paid emissions

allowances of 338 publicly traded European companies.

Our results reveal a strongly statistically significant relationship between carbon price changes and stock

returns. This relationship is found to depend on firms’ carbon intensity: the higher the carbon costs a firm

faces, the more an increase in the carbon price is linked to a drop in its market valuation. Importantly,

investors seem to price in the costs of purchased emissions allowances, while the free allowances do not

impact the relationship between carbon prices and stock returns. This illustrates the importance of both

internalizing the emissions externality via carbon pricing and improving data availability. Taken alone,

transparent information about the levels of emissions does not seem to inform how investors consider carbon

price changes when valuing stocks. However, financial markets reflect climate policies when these lead to

noticeable current or future financial costs for firms. In particular, our estimates show that higher carbon

1It went through several “trading phases”: a pilot Phase I (2005-2007) to test the system, Phase II (2008-2012) when the

free allocation of allowances started to decline, Phase III (2013-2020) when auctioning became the default method for allocating

allowances, Phase IV (2021-2030) when more ambitious targets in terms of annual decline in emissions allowances were set.
2This fraction varies from sector to sector and typically increases with the risk of carbon leakage due to international

competition. Since 2013 the fraction is very low for the electricity sector.
3It addresses the problem only partially because (i) not all sectors and all greenhouse gases are included in the EU ETS

and (ii) no forward-looking data on firms’ future emission paths is available.
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price is associated with stock price declines for companies that spend more than 1.8% of their revenue on

emission allowance purchases. In recent years, a 1% carbon price increase is linked to a stock price drop of up

to 0.21% for the most polluting companies. The magnitude of the effect varies across different subsamples,

but the nature of the relationship stays unchanged.

The paper is organized as follows. Section 2 summarizes the related literature, and Section 3 describes

the data collection process and the resulting final dataset. Section 4 sets out the econometric framework and

the estimates. Section 5 summarizes the results and draws policy conclusions.

2 Literature Review

The first empirical studies on the effect of carbon prices on stock prices were published a few years after

the introduction of the European Union Emissions Trading System (EU ETS) in 2005. So far, the literature

has not reached a consensus on the direction of this relationship. Results differ depending on the choice of

countries, companies, periods, and analytical approaches. At the same time, most papers conclude that the

magnitude of the relationship is fairly small (a 1% change in the carbon price tends to coincide with a stock

price change of only a few basis points). Another broadly confirmed result is that the interaction between

stock and carbon price changes is not stable over time. This evolution is typically explained by changes in

the functioning of the EU ETS.4 Overall, the literature has broadly followed two econometric approaches:

the multifactor market model approach (MMM henceforth) and the capital asset pricing model approach

(CAPM). We summarize the results of papers applying both approaches.

Multifactor market model approach

These models essentially estimate the relationship between stock returns and carbon price changes controlling

for overall stock market returns and energy price dynamics as measured by oil, gas, and electricity price

returns. The period analyzed in these papers was gradually extended from just a few years of the EU ETS

existence to its several phases.

Oberndorfer (2009) started by analyzing the data only for 2005-2007 (Phase I of the EU ETS), which

corresponds to the period when the allocation of allowances to energy producers was fully free of change.

The analysis found a statistically significant positive relationship between the carbon price change and

electricity stock returns. A higher carbon price implied a higher value of freely allocated allowances held

on the companies’ balance sheet, which is consistent with positive stock market moves. These results were

confirmed by Veith et al. (2009), which applied a similar methodology to a sample of 22 European electricity-

generating firms. Jong et al. (2014) also find similar results via an event study methodology applied to April

4The free allocation of allowances dropped from close to 100% in Phase I (2005-2007) to 90% in Phase II (2007-2012) and

was subsequently replaced by auctioning as the default method for allocating allowance in Phase III (2013-2021). The sectoral

coverage of the EU ETS was gradually expanding. The system included only power generation and carbon-intensive industries

(like oil refineries, cement production, iron, and steel) during Phase I, but was expanded to aviation in 2012 and finally to

ferrous and non-ferrous metals in Phase III.
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2006, when the carbon price dropped sharply due to the overallocation of emission allowances. Firms with

higher amounts of carbon allowances on their balance sheet and with lower carbon intensities register the

largest increase in share prices.

Mo et al. (2012) and Tian et al. (2016) subsequently extended the analysis by using the data for 2006-

2010 and 2005-2012, respectively. This allowed exploring the evolution of the relationship after the transition

from Phase I to Phase II when the proportion of freely allocated allowances fell to around 90%. Mo et al.

(2012) concluded that carbon price developments have affected corporate value in the opposite directions: in

Phase I, the increase in carbon price tended to be accompanied by corporate value appreciation, while during

Phase II, it was more likely to induce depreciation. The authors link these changes to the adjustment of

the allowances allocation policy between Phases I and Phase II. Tian et al. (2016) do not find a statistically

significant relationship between the carbon price changes and electricity stock returns either during Phase I

or Phase II. However, they confirm that the stock market penalizes “dirtier” energy producers. The stock

returns of carbon-intensive companies are negatively correlated with carbon price changes, while the opposite

is true for less carbon-intensive producers.

Da Silva et al. (2016) and Moreno & da Silva (2016) extended the period under analysis to 2008-2014

and 2008-2015, respectively. These papers focus on the Spanish stock market and base their analysis on

13 and 31 companies, respectively. Longer samples allowed us to compare the relationship during Phase

II and Phase III, when the free allocation of allowances was gradually replaced by auctioning mechanisms.

Both papers find evidence of a positive relationship between carbon price changes and stock returns during

Phase II, and either a negative or insignificant relationship during Phase III. A positive correlation with the

carbon price is found for power companies relying on renewable energy sources. However, it turns negative

for nearly all companies relying on non-renewable energy sources. The relationship also differs across sectors

depending on the share of allowances allocated for free.

The aforementioned results are confirmed by Zhu et al. (2018), which apply the MMM approach and

quantile regressions to a dataset of 65 companies covering 2005-2017. The authors find a positive relationship

between carbon price returns and stock returns in Phase II and a negative relationship during Phases I and III.

Overall, these papers provide some evidence of the fact that the relationship between carbon price changes

and corporate stock returns in the electricity sector gradually switched from positive to negative, as the

EU ETS evolved towards a more market-based allocation of allowances. In addition, the stock returns of

companies that are more carbon-intensive (or more reliant on non-renewable energy sources) seem to be

negatively affected by carbon price increases.

Capital Asset Pricing Model approach

Another strand of the literature tries to quantify the carbon premium (defined as the excess rate of return

of dirty companies over otherwise comparable clean ones) by employing the CAPM approach.

Witkowski et al. (2021) apply this theoretical approach to portfolios of dirty and clean companies in the

energy and energy-intensive sectors from all the EU ETS countries for the period between 2003 and 2019.
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The authors confirm the presence of a carbon premium but they provide evidence of its unstable nature.

The premium was positive – and statistically significant – prior to the introduction of the EU ETS and

during 2003-2012, but became negative during 2013-2015 and statistically insignificant starting from 2016.

The switch in the sign of the premium may be linked to changes in the rules governing the EU ETS.

Oestreich & Tsiakas (2015) apply the CAPM approach to the data for 65 German companies during

2003-2012. They find a highly statistically significant carbon premium in 2003-2009 and also link it to the

free allocation of allowances. The carbon premium dissipates after 2009 (one year into Phase II of the EU

ETS). Ryszka (2021) employs the CAPM approach to explore the data on 900 European companies but fails

to identify a statistically significant carbon premium after controlling for firm-specific characteristics.

Using US firm-level data, Bolton & Kacperczyk (2021) study to what extent carbon emissions and carbon

risk affect stock returns and equity prices. Bolton & Kacperczyk (2021) find a positive and statistically

significant effect of carbon emissions on returns. This effect is identified as evidence for a “carbon premium”

– i.e., investors’ demand for higher returns due to the exposure to carbon risk. Bolton & Kacperczyk (2021)

argue that the carbon premium is directly related to the total level (and not the intensity) of emissions,

which is not ideal given that total emissions are highly dependent on the size of the firm.

Görgen et al. (2020) build a firm “brownness-greenness” indicator and reveal that (i) brown firms out-

perform green firms, on average (ii) firms becoming “browner” relative to the preceding year experience

negative returns. The two effects are found to have similar magnitudes, which reveals the ambiguous effect

of carbon risk on stock returns.

While both the MMM and the CAPM approaches investigate corporate stock returns in light of carbon

pricing, they do not aim to measure the same effects. The focus of CAPMs is on excess returns of highly

emitting over comparable clean firms. When found, these excess returns are interpreted as additional com-

pensation that investors require to bear a non-diversifiable “carbon risk” (such as a possible future tightening

of climate policy depressing the valuation of polluting firms). The estimates of this implied premium are

highly dependent on the ability to construct portfolios of stocks with very similar firm characteristics (apart

from those that are controlled for in the specification) but different carbon intensities. At the same time,

the CAPM does not allow linking directly the stock price performance to carbon price changes. The MMM,

on the other hand, explicitly measures this co-movement – which is also the focus of this paper.

Identifying clean firms

The results of the above-mentioned studies show that carbon price changes affect carbon-intensive and clean

companies differently. The authors use various methods and data sources to classify companies by this

criterion. For instance, Tian et al. (2016) consider companies that generate 50% or more of their electricity

from fossil fuels as carbon-intensive. Da Silva et al. (2016) use corporate information on the use of renewable

and non-renewable energy sources. Oestreich & Tsiakas (2015) classify as “dirty” those firms which have

received more than one million free allowances (annually) during the initial two phases of the EU ETS.

Witkowski et al. (2021) develop their carbon risk exposure ratio calculated as the difference between actual
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emissions and free allowances normalized by companies’ total assets. To the best of our knowledge, carbon

intensity classifications based on the EU ETS data have not yet been used in the studies following the MMM

approach.

Alternative analysis techniques

Several other studies explored linkages between emission allowance price changes and stock returns using

techniques, other than CAPM and MMM described above.

Using VAR-GARCH models, Dutta et al. (2018) find that carbon emissions prices transmit their volatil-

ities into the stock performance of European electricity companies. Wen et al. (2020) recur to non-linear

autoregressive distributed lags (NARDL) models to explore the asymmetry between the carbon price and

the stock price movements in China. Wen et al. (2020) find that an increase in the carbon price affects stock

prices more stronger than a decrease.

More recently, the impact of transition risk on stock returns was also assessed using modern textual

analysis techniques that allowed to build text-based metrics of carbon intensity using keywords from quarterly

earnings conference calls (Sautner et al., 2022). Using these text-based metrics of carbon intensity, Deng et

al. (2022) show that until late 2021 the stocks of those US companies that are more vulnerable to a low-

carbon economy transition performed better. This result likely reflects investors’ expectation of a slowdown

in transition policies in the US, while in Europe – where climate policy is found to be more ambitious – the

effects were the opposite. Faccini et al. (2021) find that the climate policy factor is priced in the U.S. stock

market. In particular, investors tend to demand positive risk premia for those companies exposed to the US

climate risk policy.

Contribution of this paper

We follow the strand of literature using multifactor market models (Oberndorfer 2009, Veith et al. 2009, Mo

et al. 2012, Tian et al. 2016, Da Silva et al. 2016), but we extend the analysis in a number of ways.

First, our research covers Phase III of the EU ETS (2013-2020) and the start of Phase IV (launched in

2021). The previous studies applying the MMM approach were limited to the analysis of data for 2005-2017,

a period when the free allocation of allowances remained high and allowance prices stayed low. Our study

thus contributes to the earlier work on the evolution of the relationship between stock returns and carbon

price changes across the EU ETS phases.

Second, we significantly expand the number of companies in the sample and extend the analysis beyond

the electricity sector. The previous papers applying MMMs were based on relatively small samples (with

a maximum number of companies in Zhu et al. 2018 of 65). Our sample consists of 338 companies whose

business is affected by the EU ETS and is not limited to the electricity sector.

Third, we introduce a quantitative measure of corporate carbon costs based on the EU ETS data for

2012-2021. In the existing studies applying the MMM approach, the distinction between more and less
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carbon-intensive firms is typically done based on corporate information about energy sources for electricity

generation, which might not always be fully transparent, comparable, and easily quantifiable. We take

advantage of the EU ETS data to construct an indicator reflecting the annual costs related to the purchase

of emission allowances. This indicator allows us to differentiate more rigorously between companies that are

more and less affected by carbon pricing. Our approach is broadly similar to the one followed by Witkowski

et al. (2021) but we use revenue and market capitalization as normalizing variables instead of total assets.

We draw from the approach described in Abrell et al. (2021) and Jaraitė et al. (2013) when matching the

EU ETS accounts with corporate data from the ORBIS database when compiling our dataset.

3 Data

3.1 Dataset

Our analysis focuses on the relationship between the market price of emission allowances and the stock prices

of the companies covered by the EU ETS. To conduct this analysis, we have built a database of publicly

traded companies that have subsidiaries covered by the EU ETS. The database includes annual data on

emission allowances allocated to these publicly traded companies (both for free and via the market), the

firms’ key financial indicators (notably, revenue and market capitalization) and their stock prices at a weekly

frequency converted into EUR if the company is quoted in a different currency.

When collecting the data, we relied heavily on three sources of information. One is the EU ETS data on

emissions, emission allowances, and transactions between the participants of the system. The second source

is Orbis, a set of company databases owned and operated by the commercial data provider Bureau van

Dijk. The third source is an open database of financial market indicators provided by Yahoo Finance. We

also benefit from the earlier work of Abrell et al. (2021), who collected the data from the European Union

Transaction Log (EUTL) in a user-friendly format.5 We have also followed some of the recommendations

provided by Jaraitė et al. (2013), who describe an approach to matching the EU ETS accounts with corporate

information from the ORBIS database.

Putting together the dataset used in the analysis represented a significant challenge given that the EU

ETS data is provided at a disaggregated installation level and is not directly linked to specific publicly

traded companies. To collect the data we had to resolve three main tasks: (i) matching the installations

with their parent companies,6 (ii) keeping in the sample only the parent companies that are quoted on the

stock exchange, (iii) ensuring that those installations belonging to the same parent company are properly

consolidated. Matching the EUTL and Orbis data is at the heart of completing these tasks. A more detailed

description of each step in the matching procedure can be found in subsection A.1 of the Annex.

5See https://euets.info/ for further reference
6The installations are matched to their current parent companies and it is assumed that the controlling shareholder did

not change during the sample period. Given the high complexity of a full historical matching and a relatively small share of

companies exposed to change in ownership, we do not expect this assumption to significantly alter our results.
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The matching process was complicated given the heterogenous format of company identification numbers

within the EUTL. Hence, matching the EUTL data with Orbis data required a substantial amount of manual

work. The universe of entities covered by the EU ETS is very large (it included around 10,500 account holders

as of 2020 ), which makes the complete matching highly time-consuming. We managed to unequivocally

match almost 5800 account holders within the EU ETS with specific firms from Orbis. Out of these, 2112

are controlled by publicly traded companies. The remaining account holders do not have publicly traded

companies in their ownership structure, and hence were excluded from further analysis. Certain account

holders were often controlled by a single company. Once we have taken this into account in consolidation

procedures, we end up with 634 publicly traded companies in our sample.

We stopped further matching when the quality of results started to decline and unambiguous matching

was no longer possible. In particular, this was the case for small installations and companies. Nevertheless,

we believe that our sample is sufficiently representative of the companies affected by carbon pricing via

the EU ETS. In any given year since 2013, the 5800 account holders within the EU ETS that we matched

with Orbis corporate data accounted for around 95% of purchased emission allowances within the EU ETS

(Figure 1). Two-thirds of these purchased emission allowances belong to publicly traded companies. The rest

was acquired by account holders with no publicly traded parent companies. This high coverage of purchased

emission allowances by our sample should not be surprising. The concentration of emission allowances among

the key players is quite high. For instance, in 2019, 74% of emission allowances were purchased by only 1%

of account holders.
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Figure 1: Paid emission allowances covered by the sample

For further analysis, we decided to narrow our sample to the European traded companies. This allowed

us to concentrate on a more homogeneous sample and to be able to control companies’ stock prices for
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the general stock market trends that can be approximated with Eurostoxx 600 dynamics.7 Non-European

traded companies account only for a small share of emissions allowances allocated within the EU ETS (not

more than 2.5% in any given year, see Figure 1). Excluding them does not do much harm to the emissions

allowances coverage of our sample. Once we remove the European companies for which some data (either

stock prices or revenues used for normalizing carbon costs) is missing, we end up with our final dataset of

338 publicly traded companies.

Earlier studies that applied a multifactor market model approach to explore the link between the price of

carbon and the stock market prices were conducted based on data from not more than 22 European energy

companies. Our sample is much broader both in terms of the number of companies and their sectoral profile

(see Figure 3). Apart from energy companies (12% of our sample), our dataset includes chemical producers

(19%), mining companies (8%), the transportation industry (6%), and numerous manufacturers from other

sectors.

Our sample includes companies from 24 European countries, with the UK, Germany, France, Poland, and

Italy having the largest representation and jointly accounting for 55% of companies in the dataset (Figure 2).

About a quarter of the companies in the sample are mid-size (have revenue of less than USD 1bn), while the

remaining three quarters are represented by large-sized enterprises.
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Figure 2: Data sample description: number of firms by country

We also collect data on weekly changes in oil, electricity, and gas prices converted into EUR which we

subsequently introduce as control variables in our regressions (see more in Section 4.2). Specifically, we use

7Stock index of 600 European stocks, including large, small, and mid-capitalization companies from 17 European countries
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Figure 3: Data sample description: number of firms by industry

Brent price for oil, ICE Dutch TTF one month futures for gas, and German electricity futures prices from

Europe Exchange AG for electricity8.

3.2 Stylized Facts

In recent years, the rising price of emission allowances within the EU ETS (see Figure 4) has attracted a lot

of attention. However, there is little evidence of the magnitude of actual carbon costs for firms. Do these

costs represent a sizeable share of the overall operating expenses? Can they significantly erode companies’

profitability? Or are they negligible and only marginally affect corporate financials? Having matched the

EU ETS data on emission allowances with the Orbis corporate finance data, we can provide some insights

into these questions. In this section, we start with an initial data overview, which we then complement with

a more rigorous econometric analysis in Section 4.

Over the latest decade, the companies in our sample, in particular electricity-generating ones, managed to

decrease their carbon footprint. The volume of their verified emissions was gradually declining (Figure 5). A

sharper drop in 2020, particularly pronounced in electricity generation and aviation (included in the “Other

industries” category), was triggered by the COVID-19 pandemic.

To recall, the companies from the industries covered by the EU ETS need to surrender allowances for

their verified emissions. The allowances can be distributed either via free allocation or bought (via auctions

8German electricity futures prices from the EEX are typically chosen as a proxy for the European electricity market

developments as this market is the biggest in Europe.
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Figure 4: The price of carbon within the EU ETS
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or on the secondary market). The corresponding volumes are published by the European Commission on an

annual basis. The shares of purchased allowances (defined as total emissions minus free allowances) in total

allowances differ a lot across industries in our sample (Figure 6). In line with the existing regulation, the

free allocation of allowances was gradually phased out for the electricity sector, with the share of purchased

allowances exceeding 90% since 2019. In sectors like mining and chemistry, which we also focus on in this

paper, the coverage of emissions by purchased allowances is still below 50%. The negative share of purchased

allowances in 2012 reflects the free allocation of allowances exceeding the volume of actual emissions during

Phase II of the EU ETS. This allowed the companies to accumulate a stock of allowances instead of having

to purchase them.
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Figure 6: The share of purchased emission allowances in total emission allowances, %

To assess the costs associated with the purchase of allowances, we need to multiply the carbon price by

the volume of emissions not covered by free allowances. We make a number of assumptions about that. Given

that the EUTL database does not contain specific information on the precise time and price of purchases,

we assume that the companies were spreading them evenly throughout the year. Hence, we approximate the

actual price of the transactions with a mean annual price.9 To make carbon costs comparable across firms,

we scale them by the firms’ yearly revenues.10 We refer to the obtained indicator as “paid carbon intensity”

or “relative carbon costs” (we use these terms interchangeably hereinafter). A similar indicator based on

allowances allocated for free is referred to as “free carbon intensity”.

9This, of course, need not be true. Firms could be surrendering allowances they purchased or received for free in previous

years. They could also enter into derivative contracts (futures or options) leading to them not paying the spot price. However,

public auctions are organized (bi)weekly and therefore our approximation seems valid. For more discussion on the timing of

purchases, see section A.4.3
10We also use other financial metrics for normalization as a robustness check. See the results in Annex A.4.4
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For the majority of companies included in our sample, the paid carbon intensity roughly tripled in 2019-

2021 compared to earlier years. The move reflects a sharp increase in the price of carbon within the EU

ETS since 2018. However, even after this increase the costs stayed quite low: the sample mean remained

around 0.5% of revenue, the median has not deviated much from zero (see Figure 7 and Table 1). Still, in a

few cases, carbon costs were sizeable and exceeded 10% of the revenue.
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Figure 7: Distribution of the paid carbon intensity of firms through time.

We notice that paid carbon intensity differs significantly across industries (Figure 8). Electricity gen-

erating firms face costs above 3% of total revenues on average in 2019-2021 compared to around 1% in

the preceding years. To put this number into context, the average profit margin for European electricity-

generating firms in our sample is around 8%, according to Orbis data. The effects of carbon price increases

are hence noticeable in this sector and will likely play a role in stock price dynamics. This is in stark contrast

with other industries, where the average paid carbon intensity does not exceed 0.5% of revenue. These sec-

toral differences are not surprising given that manufacturing industries keep receiving a high share of their

emissions allowances for free. The measure is meant to limit “carbon leakage”.

When comparing paid carbon intensity across countries, we notice that on average it stayed below 1% of

revenue even at the end of the sample when the price of carbon already significantly increased (Figure 9).

The costs are noticeably higher only in three countries: Greece, Poland and the Czech Republic. In the

particular case of Greece, the results are based on the data for a single company and hence should not be

treated as representative of carbon costs level in the country in general. The data on paid carbon intensity

rhymes with other relevant environmental indicators. For instance, Poland and the Czech Republic are

among the countries with the lowest GDP per unit of energy-related CO2 emissions (OECD, 2015).

Low “paid carbon intensity” in the majority of firms suggests that at the current stage this indicator

14
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Figure 8: Paid carbon intensity by industry (in % of revenue)
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Figure 9: Paid carbon intensity by country (in % of revenues)
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is unlikely to have a strong relationship with the stock prices in sectors other than electricity. Indeed, the

impact of this indicator on the firms’ profitability is low and can be expected to be disregarded by investors.

We will test this hypothesis more rigorously in the following sections.

Table 1 presents summary statistics for the main variables of interest. Interestingly, the summary statis-

tics showcase some similarities between commodities markets and the market of emissions allowances. In

particular, the carbon and commodities price returns exhibit much higher volatility than the European stock

market. Judging by the mean and median weekly returns, during the decade under consideration, the price

of carbon was increasing much faster than the price of commodities or stocks, reflecting a rapidly declining

supply of emissions allowances.

Frequency N Mean Median Min Max Stdev.

Stock Returns Week-firm 147,171 0.27 0.20 -82.7 212.46 5.18

Eurostoxx Return Week 470 0.14 0.37 -18.4 7.36 2.25

Carbon Price Return Week 470 0.77 0.67 -33.5 26.37 6.74

Gas Return Week 470 0.48 -0.22 -36.3 46.54 7.50

Oil Return Week 470 0.14 0.46 -26.5 35.90 5.43

Electricity Return Week 470 0.61 0.16 -47.1 47.51 7.68

CI (paid) Year-firm 2,844 0.25 0.00 -15.3 25.49 1.38

CI (free) Year-firm 2,844 0.32 0.05 -0.40 39.41 1.25

Table 1: Summary Statistics (Mean, Median, Min, Max, Standard deviation in %)

4 Econometric Analysis

This section is structured as follows: we start by presenting the theoretical underpinning of our analysis

(section 4.1), then state the econometric specification for the empirical analysis (section 4.2), present the

estimates on the full dataset (section 4.3), on different sub-samples (section 4.4) and finally present an event

study (section 4.6).

4.1 Theory

In this section, we aim to understand how carbon price changes can impact a firm’s stock price by means of

a stylized model. We start by writing the stock price as the sum of discounted future profits:

S = ∑
t

btπt (1)

where bt denotes the discount factor for year t and πt denotes the firm’s profit in year t.
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We can then express that profit as a function of the carbon price (following Bushnell et al., 2013):

πt = Pt(qt, q
o
t )qt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
revenue

−C(ω)qt
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

costs

− (rtqt − Ft)τt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

carbon costs

+ At−1(τt − τt−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

allowance valuation

+ δt
®

other effects

(2)

where Pt(qt, q
o
t ) is the price given by the demand curve faced by the firm (expressed as a function of the

quantities produced by the firm qt and competing firm qot ). We denote the unit cost of the firm by C, which

depends on a vector of input prices ω. The exogenous emission rate is given by rt (in tCO2e/unit, and

determined by the firm’s decarbonization path), τt denotes the carbon price per tCO2e at the end of year t,

Ft is the number of free allowances received in year t, and At−1 is the stock of allowances the firm held at

the end of year t − 1.

In the Appendix we derive the impact on the stock price of an exogenous carbon price shock:

dS

dτ0
= ∑

t

btP ′t
dqo∗t
dτ0

q∗t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[A]

−∑

t

bt
∂C

∂ω

∂ω

∂τ0
q∗t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[B]

+∑

t

A−1∑
t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[C]

−∑

t

bt(rtq
∗

t − Ft)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[D]

(3)

where π∗ and q∗ are consistent with profit maximization and τ0 is today’s carbon price.

Each term in equation (3) represents a different (and sometimes opposite) effect of a carbon price change

on the stock price. Term [A] shows how revenues can increase if competing firms have reduced output in

response to the higher carbon price,11 term [B] the additional costs faced by firms due to the carbon price

impact on inputs, term [C] the valuation gains on the allowance inventory, and term [D] the firm’s increased

carbon costs. This expression suggests that the impact of a carbon price shock on the stock price is dependent

on several factors that go beyond the immediate carbon cost increase, such as: how differently a particular

firm reacts compared to its competitors, the input structure (i.e., how sensitive are input prices to carbon

prices), and/or the number of allowances held by the firm.

4.2 Specification for the empirical analysis

We now aim to capture the co-movements of stock returns and changes in the carbon price, in line with the

multifactor market model approach presented in the Literature Review, regressing stock returns on carbon

price returns and a number of controls. To do this, we estimate the following ordinary least squares (OLS)

regression:

rstocki,t = β1r
index
t + [β2 + β3CIi,Y ] r

carbon
i,t + β4r

comm
t + FEi,t + εi,t (4)

Where rstocki,t is the stock return of firm i in week t; rindext is the stock index (Eurostoxx) return in week t

controlling for the overall market dynamics; rcarbont is the return of the carbon price in week t; CIi,Y is the

carbon intensity of firm i in year Y -1,12 for which we use different metrics, all capturing emissions relative

11P (q) being the demand curve, P ′t < 0, if competing firms reduce output then dqo∗t /dτ0 < 0 and term [A] is positive. If

demand is inelastic then P ′t is highly negative and carbon prices can be passed on to consumers.
12Data for year Y are only published in year Y+1. In order to avoid using information that is not yet available to market

participants, we plug the latest known statistics into the regression, i.e. those of year Y -1. For instance, emissions and free
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to firm size (see Section 4.3); rcomm
t is a vector of commodity weekly returns (gas, oil, electricity) used as

controls - this is in line with the multifactor market model literature and accounts for the relationship of

energy prices with both stock and carbon prices; finally FEi,t are the industry and country × month fixed

effects.

The main econometric innovation with respect to the literature is the modeling of the relationship between

stock returns and carbon price returns. Thanks to the significant data collection effort, we are able to not

only capture the co-movements with one term (β2r
carbon
t ) but also allow the relationship to vary with the

carbon intensity of each firm (β3CIi,Y × r
carbon
i,t ). For any firm i in year Y , the sensitivity of the stock return

to the carbon price return is therefore given by:

∂rstock

∂rcarbon
= β2 +CIi,Y × β3. (5)

In this setup, β2 captures the co-movement of stock returns and carbon price changes for a company with

a carbon intensity of zero. Throughout the remainder of this section, we will focus on β3 as it captures the

degree to which stock markets treat firms with different carbon intensities differently.

Relating the specification for the empirical analysis to the stylized model in the previous section, β2

would capture the combined effect on the stock price of changed revenue, higher costs, and allowance stock

valuation gains – terms [A], [B] and [C] in Equation (3) – while β3 would reflect the sensitivity to the paid

carbon intensity (rtq
∗

t −Ft in term [D]). Having no information about firms’ market power and cost structure,

we cannot explicitly account for the inter-firm variability of terms [A], [B]13 and [C].14

We chose to include country-month interacted fixed effects to account for country-specific business cycles

as well as industry fixed effects to account for average heterogeneity across sectors. We further believe that

the errors should be clustered at the firm level as treatment exposure (i.e. factors affecting how stock prices

react to carbon price changes) differs from one firm to another (the firm’s country, industry, size, etc. might

affect the relationship).

4.3 Full sample estimates

As discussed in Section 3.1, different metrics of “carbon intensity” (CIi,Y ) can be constructed based on the

data published by the European Commission.

allocations for the year 2021 were published in April 2022, and revenues for 2021 in early 2022. Throughout 2021 therefore, the

latest information on firms’ carbon intensity available to market participants is that of 2020.
13Term B should not be confused with the vector of commodity controls in Equation (4). They are included in the specification

to address potential endogeneity between the carbon price and commodity prices and not as the price of inputs in the production

process.
14In Appendix A.4.5 we show that estimating firms’ allowance inventories - term [C] in Equation 3 is not possible with the

data in the EU ETS database.
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Total carbon intensity

We start by estimating equation (4) using the “total carbon intensity”, computed as a firm’s total ETS

emissions15 multiplied by the average annual carbon price and divided by the firm revenue.

CItotali,Y =

Etotal
i,Y × P̂Y

Ri,Y
(6)

where Etotal
i,Y are firm i’s verified ETS emissions in year Y − 1, P̂Y is the mean price of carbon in year Y − 1

and Ri,Y is the total revenue of firm i in year Y −1 (in EUR), used to normalize the carbon costs (the carbon

intensity CIi,Y can then be compared across firms).16

The results of the regression on the full sample of 338 publicly traded firms over 9 years are shown in

Table 2 column (1). Individual stock returns are found to co-move with the stock price index in a highly

statistically-significant way (β1 = 0.914). An increase of the Eurostoxx index of 1% is found to coincide

on average with an increase of individual stock prices of 0.914%. Oil and electricity price returns have no

significant impact on stock returns, while gas prices correlate positively.17 We attribute these differences in

coefficient signs for commodities to the heterogeneous nature of our sample. While the emissions allowances

clearly represent an input for all firms, the commodities can in fact be even output as well (for example,

electricity price for electricity generating companies, oil price for mining). Moreover, the actual prices paid

for commodities by the firm may deviate quite a lot from a single benchmark price of gas and electricity

used in the specification. However, including commodity price controls in the specification is a standard

practice in the papers following the MMM approach. This is typically done to control for the potential

endogenous relationship between the carbon price and commodity prices. In the absence of these controls, a

statistically significant relationship with carbon returns could partially be attributed to the effect of resource

or electricity price developments.

Turning to the key relationship analyzed in this paper, an increase in the carbon price is found to coincide

on average with a minuscule but highly statistically significant increase in stock prices (β2 = 0.009). This

implies that a weekly increase in carbon prices of 1% is associated with an increase in stock prices of 0.009%.

Furthermore, this relationship is found to depend on the emission intensity of the firm (β3 < 0): the higher

the carbon intensity, the lower the stock price return for a given increase in carbon prices.18

15The sum of all the verified emissions under the EU ETS. To see which economic activities and greenhouse gases are covered,

see the European Commission website.
16CIi,Y can be seen as the total cost of carbon relative to revenues a firm would have to pay if there were no free allowances

in the EU ETS.
17This is broadly in line with the findings of earlier publications applying a multifactor market model approach. Most of

them do not find any clear evidence of the direction of the relationship between stock returns and oil, gas, and electricity price

changes.
18It should be noted, however, that β3 is not significantly different from 0 in some alternative standard error clustering

approaches, see Appendix A.4.2.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Full Sample Full Sample Electricity Chemicals Mining Others 2013-2017 2018-2021 High CC Low CC

rcarbon (β2) 0.011∗∗∗ 0.010∗∗∗ 0.031∗∗∗ 0.005 0.002 0.008∗ 0.016∗∗∗ -0.002 0.012∗∗∗ 0.008∗

(0.002) (0.002) (0.008) (0.006) (0.008) (0.003) (0.003) (0.005) (0.003) (0.004)

CItotal × rcarbon (β3) -0.309∗

(0.120)

CIpaid × rcarbon (βpaid
3 ) -0.566∗∗∗ -0.549∗∗ 1.177 0.172 0.135 0.192 -0.860∗∗∗ -0.586∗∗∗ -0.241

(0.170) (0.192) (1.261) (0.215) (2.156) (0.209) (0.169) (0.172) (1.191)

CIfree × rcarbon (βfree
3 ) -0.044 -0.151 -0.931 -0.030 0.390 0.091 -0.070 -0.073 0.217

(0.097) (0.087) (1.528) (0.162) (0.582) (0.089) (0.206) (0.082) (0.596)

Eurostoxx Return 0.911∗∗∗ 0.911∗∗∗ 0.706∗∗∗ 0.930∗∗∗ 0.973∗∗∗ 0.941∗∗∗ 0.809∗∗∗ 0.990∗∗∗ 0.920∗∗∗ 0.901∗∗∗

(0.021) (0.021) (0.055) (0.039) (0.059) (0.029) (0.022) (0.024) (0.030) (0.029)

Gas Return 0.016∗∗∗ 0.016∗∗∗ 0.009 0.017∗ 0.008 0.019∗∗∗ -0.013∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.017∗∗∗

(0.003) (0.003) (0.006) (0.007) (0.009) (0.004) (0.004) (0.004) (0.004) (0.004)

Oil Return -0.003 -0.003 -0.008 0.002 0.146∗∗∗ -0.023∗∗∗ 0.006 -0.002 -0.005 0.000

(0.006) (0.006) (0.009) (0.008) (0.038) (0.007) (0.007) (0.007) (0.009) (0.007)

Electricity Return -0.001 -0.001 -0.006 -0.002 0.024∗ -0.002 -0.007 0.004 0.002 -0.004

(0.003) (0.003) (0.006) (0.005) (0.011) (0.004) (0.004) (0.004) (0.004) (0.003)

N 147,171 147,171 19,000 29,208 11,665 87,298 79,218 67,953 78,677 68,494

Industry FE ✓ ✓ − − − ✓ ✓ ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered SE Firm Firm Firm Firm Firm Firm Firm Firm Firm Firm

R2 0.202 0.202 0.230 0.296 0.291 0.198 0.156 0.238 0.179 0.237

Adj. R2 0.188 0.188 0.168 0.250 0.202 0.177 0.140 0.225 0.171 0.216

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Regression results, estimation of equations (4) and (7). Columns correspond to different sub-samples.
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Free and paid carbon intensity

The sensitivity of stock prices to carbon prices is found not to robustly depend on the total carbon intensity

of a firm. We, therefore, split the total carbon intensity CItotali,Y in its free and paid components (respectively

the parts of emissions covered by allowances allocated for free and allowances that needed to be purchased):

CItotali,Y =

(Efree
i,Y +Epaid

i,Y ) × P̂Y

Ri,Y
=

Efree
i,Y × P̂Y

Ri,Y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CIfreei,Y

+

Epaid
i,Y × P̂Y

Ri,Y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CIpaidi,Y

(7)

where Efree
i,Y (the number of free allowances received by firm i in year Y − 1) can be retrieved from the EU

ETS database and Epaid
i,Y is computed as the complement to Etotal

i,Y
19. Equation (4) therefore becomes:

rstocki,t = β1r
index
t + [β2 + β

free
3 CIfreei,Y + βpaid

3 CIpaidi,Y ] r
carbon
i,t + β4r

comm
t + FEi,t + εi,t (8)

The results of this specification for the full sample are shown in Table 2 column (2). The co-movements

of individual stock prices with the stock index, oil, electricity and gas prices are identical in value and

significance to the regression using the total carbon intensity, as is that of carbon price changes (β2).

The major difference appears in the sensitivity to firms’ carbon intensities (βfree
3 and βpaid

3 ), with a higher

paid carbon intensity leading to significantly lower stock returns in the face of a carbon price increase, while

the free carbon intensity has no impact at all. Indeed βpaid
3 is negative and statistically significant whereas

βfree
3 is not significantly different from zero.

Using Equation (5), we can represent the sensitivity of stock prices on a 1% increase in carbon prices

(Figure 10). We can see that for firms with a paid carbon intensity above 1.8% (facing carbon costs higher

than 1.8% of revenues, represented by the dashed red line on the plot) an increase in carbon prices is

associated with a drop in stock price20. Stated differently, for a firm with a paid carbon intensity of 10%,

a carbon price increase of 1% will coincide with a stock price drop of 0.05% (represented by the dotted red

line on the plot), all else equal.21

To summarise, the results imply that stock markets do take carbon prices into account when valuing

firms’ stocks. Not only do stock prices and European carbon prices co-move, but they do so differently

depending on the actual carbon costs a firm faces: the higher the carbon costs, the bigger the lower the

stock return when carbon prices increase. However, stock markets do not seem to take the emissions into

account beyond the part that firms need to pay for within the EU ETS. Free emissions do not change the

stock price sensitivity to carbon price returns.

19Every year each firm needs to surrender an amount of ETS allowances equivalent to its yearly emissions. The fraction of

allowances not received for free needs to be purchased in an auction or on the secondary market. Hence Etotal
i,Y = Efree

i,Y +Epaid
i,Y .

20We also compute a significance test for the ratio β2/ −β
paid
3 and find that the non-linear transformation of the coefficients

yields significant results - results available upon request
21The width of the uncertainty band on Figure 10 is not constant but depends on the square of the carbon intensity. This

can be derived from equation (5): δ =
√
Var(∂rstock/∂rcarbon) =

√
Varβ2 +CI2 ×Varβ3 + 2CI ×Covar(β2, β3)

21
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Figure 10: Sensitivity of the stock return to a 1% increase in carbon price as a function of the paid carbon

intensity. Firms with an intensity above 1.8% (to the right of the dashed red line) will see their stock price

decline if carbon prices increase. A firm with CIpaid = 10% will see its stock price drop by 0.05% (dotted

red line).
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Reverting to the stylized model in section 4.1 in which we represent the stock price as the sum of

discounted future profits, it becomes apparent that the sensitivity of stock price returns to carbon price

changes depends not simply on the contemporaneous carbon intensity but the entire future path of paid

carbon intensities. In equation (3) the carbon intensity depends on the unit emissions rate representing the

firm’s decarbonization path (rt for all future t) as well as the path of allocated free allowances (Ft). Firms’

future carbon intensities might differ from the observed yearly values.

However, the fact that βpaid
3 is negative and statistically significant is consistent with stock markets

considering today’s carbon intensities as a good proxy for future CI. If that were not the case (and the firms

with the highest CI were widely expected to decarbonize fastest) then βpaid
3 would carry no significance in

the estimation. Savvy investors can be expected to consider future emission paths when valuing firms. In the

absence of high-quality comparable data on future emission paths, we investigated whether the crude proxy

of research and development (R&D) expenditures allowed us to explain further cross-sectional variability,

i.e. whether firms with high R&D expenditures are less affected by increasing carbon prices. However, as

shown in section A.4.6 in the appendix, we find no statistically significant relationship.

In order to examine the robustness of our estimates, we provide alternative specifications in the Appendix.

The results are found to be robust to all possible clusterings of standard errors and different combinations

of fixed effects as depicted in Table A.222. The choice for the normalization factor (i.e., revenues or market

capitalization) is also found to not alter the conclusions. In the Appendix we further study the timing

of purchases and the build-up of allowance inventories by firms and the effect of a firm’s research and

development costs.

4.4 Sub-sample estimates

In order to better understand the stock price-carbon price relationship identified in the previous section,

we complement the results on the full sample with studies on sub-samples (slicing the data by industry, by

time periods, and by country groups). As we show below, in all three sampling approaches the interaction

between the carbon price and stock prices is particularly strong when carbon intensity is high. Concretely,

we reveal statistically significant relationships in the electricity sector, during the recent period of a rapid

carbon price increase, and in the countries with the highest carbon costs. We now describe the results for

each sub-sample in more detail.

Results by industry

We have explored the relationship between the carbon price and the stock price performance for companies

belonging to the electricity, mining, and chemicals sectors separately. We chose these three sectors because

22Note: the choice of controlling at the monthly level is based on the fact that controlling at a lower frequency (i.e., at the

weekly level) does not allow to provide estimates (and hence control) for the Eurostoxx nor the commodities returns (see Table

A.2. This is due to the fact that both the Eurostoxx and the commodities return vary at the weekly level and hence controlling

for weekly fixed effects creates evident multicollinearity problems
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they are covered by the EU ETS and our dataset provides sufficient data for their in-depth analysis (top

three industries by the number of firms, see Figure 3). We are particularly interested in the results for the

electricity companies because they are most exposed to carbon pricing (see Figure 8). Our electricity sector

subsample is based on the information on 43 electricity companies, which is twice larger than the samples in

similar existing publications. Our chemicals sector subsample encompasses the data on 67 companies, many

of which are cement producers. The mining sector subsample is comprised of 26 companies. The remaining

202 companies are grouped into the category called “Other industries”.

Among the industries that we examine in greater detail, companies from the electricity sector have the

highest carbon costs. They were close to 3% of revenues in 2019-2021 when calculated for the whole sector.

For companies from the mining and chemicals sectors, the carbon costs remain relatively low so far and on

average do not exceed 0.5% of revenues.

We find (see column 3 of Table 2) that, in the electricity sector, carbon price increases are linked to

positive and statistically significant stock returns (β2 > 0). Similar to the results for the full sample we see

that the relationship between the stock price performance and the carbon price varies depending on the

firm’s carbon intensity, in particular its paid part (βpaid
3 < 0). Concretely, the calibrated coefficients imply

that, on average, stock prices of firms with carbon costs above 5.5% of revenues decrease when the price of

carbon increases - as described in Equation (5). Similarly to the full sample results, the emissions covered

by free allowances do not change this relationship.

The coefficients establishing the relationship between carbon price changes and stock performance for

chemicals, mining, or other industries are non-significant (see columns 4 to 6 in Table 2).

Results by sub-periods

As a next step, we run our regression on the data covering different periods with the aim to analyze the

evolution of the identified relationship over time. As our sample almost fully overlaps with Phase III of the

EU ETS (2013-2020), we cannot explore the changes in the relationship across different EU ETS trading

phases. We decided to divide our initial sample into two sub-periods (2013-2017 and 2018-2021) that differ

significantly in carbon price dynamics. The price remained low and relatively stable over the first sub-period

but started to increase rapidly during the second sub-period (see Figure 4) on the back of a lower supply of

allowances and the approval of more ambitious EU climate goals.23

We run our main regression specification on the two sub-periods (see columns 7 and 8 in Table 2). First,

we can note that the ETS price changes positively co-move with stock returns (very small effect) during

2013-2017. The difference between the magnitude of this relationship across firms depending on their carbon

intensity (either its free or paid component) was not statistically significant. However, the relationship

changed fundamentally in the more recent period. The coefficient next to carbon price interacted with the

23The so-called “Market Stability Reserve” (a mechanism that automatically reduces the amounts of auctioned allowances if

the stock of outstanding allowances reaches a threshold) was decided upon in 2018 and started in January 2019. The increased

goal of cutting emissions by 55% by 2030 (instead of the previous 40%) was proposed in 2020 and adopted in June 2021.
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paid component of carbon intensity (βpaid
3 ) becomes negative and highly statistically significant between

2018 and 2021. The free allocation of allowances does not change the nature of this relationship (βfree
3 is

not statistically significant).

These results imply that the relationship between the carbon price and stock performance that we found

for the full sample is likely driven by the developments in the last few years. Interestingly, the magnitude of

the coefficients24 suggests that during this period the carbon price becomes inversely correlated with carbon

price returns for all the companies that have to buy emissions allowances (in other words have a positive paid

component of carbon intensity). This is in contrast with the results for the full sample where the negative

effect is observed only for the companies exceeding the 1.8% carbon intensity threshold.

We also re-estimate regressions over sub-periods separately for each industry from our dataset. We find

a similar pattern for the electricity sector (see Table A.1 in Appendix A.3) which is most exposed to carbon

pricing. When it come to chemicals, mining, or other sectors the relationship between the carbon price

changes and stock performance is positive and statistically significant in the first sub-period but it is not

affected by the firm’s carbon intensity. We find almost no statistically significant relationships in the second

sub-period for these industries.

This analysis contributes to the earlier results published by Mo et al. (2012) who provided evidence on

the switch in the relationship between the carbon price and corporate valuation from positive in Phase I to

negative in Phase II of the EU ETS. We focus on Phase III and show that the relationship was positive in

the first half of the period but turned negative in the second half (with the magnitude changing with the

firms’ carbon intensity). During 2018-2021, amid a sustained increase in the price of emissions allowances,

a weekly increase in carbon prices of 1% was associated with a drop in stock prices of 0.08% for a firm with

a paid carbon intensity of 10%.

Figure 11 shows the stock returns of actual firms in our sample associated with a 1% increase in carbon

prices. The light blue distribution shows the firms in the full period (2,894 firm-years). The dark blue

distribution shows the firms in the most recent sub-period (1,335 firm-years) of 2018-2021: the sensitivity

for the firm with the highest paid carbon intensity reaches 0.21%. Two effects explain why the latter

distribution is shifted and more spread out. First, the estimated coefficients in the second sub-period (β2 = 0,

βpaid
3 = −0.830) point to a higher sensitivity of stock returns to carbon price returns than in the overall period

(β2 = 0.009, β
paid
3 = −0.538). Second, firms in the second sub-period tend to have higher carbon intensities

(0.4% vs. 0.2% in the overall sample) as shown in Figure 7.

Results by country groups

We further explore the link between carbon prices and stock performance by checking whether it differs

across country groups. With this exercise we contribute to earlier work done by Oberndorfer (2009) who also

explored country-specific market effects of carbon price dynamics. The paper found a positive relationship

between carbon prices and stock performance in most EU countries with the exception of Spain in 2005-2007.

24β2 is not statistically different from zero.
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Figure 11: Stock returns associated with a 1% increase in carbon prices for firms in our sample. The light

blue distribution shows the 2,894 firm-years of the full period. The dark blue distribution shows the 1,335

firm-years of the most recent sub-period (2018-2021) which have higher paid carbon intensities and a higher

estimated dependency on carbon intensities (see βpaid
3 in Table 2).
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Back then, the carbon price was still low and electricity companies benefited from an over-allocation of free

emission allowances. We use a different time period and methodology for the analysis, hence our results

differ.

We divide our dataset into sub-samples of firms headquartered in countries with high and low relative

carbon costs. We classify a country into the high carbon cost category if at least one company from this

country incurred carbon costs exceeding 3% of revenue in at least one year over the full period.

The high carbon cost sub-sample comprises companies from seven countries (Poland, Czechia, Great

Britain, Germany, France, Greece and Norway). High carbon intensities of firms from some of these countries

are linked to a higher than EU average share of coal in their primary energy consumption during 2013-

2021 (BP, 2021). Some of these countries are also among those with the lowest CO2 productivity in the EU,

measured as GDP per unit of energy-related CO2 emissions (OECD, 2015).

Our core findings hold in the high carbon cost sub-sample (see columns 7 and 8 in Table 2). The

relationship between the carbon price and stock performance is statistically significant and carbon intensity

dependent. As in other samples, it is the paid rather than the free component of the carbon intensity that

is being priced in by the market. The magnitude of the effect is similar to the one observed for the full

sample: a carbon price increase is associated with a stock price decline for companies with relative carbon

costs above 2% of revenue. At the same time, we find no statistically significant relationship in the low

carbon cost sub-sample.

4.5 Permanence of the effect

With the purpose of shedding light on the permanence of the effect of interest, we re-estimate the main

regression by adding lags of certain independent variables. In particular, we include up to four lags of the

carbon price return, both without interaction and interacted with the paid and free carbon firm intensity.

The results presented in Table 3 and illustrated in Figure 12 reveal three main findings. First, the carbon

price (up to the second lag) is found to have a positive association with the stock returns. Second, we find

that only the contemporaneous carbon price return interacted with the paid carbon intensity is significantly

correlated with the stock returns. This goes to show that high carbon cost-stocks underperform in weeks

when carbon prices rise and do not revert their relative losses in subsequent weeks - the effect is permanent.

Finally, and in line with the previous estimates, the free carbon intensity does not affect the stock price-

carbon price relationship at any lag.

4.6 Event study using regulatory updates

Data with daily frequency

As a robustness check, we estimated equation (8) using daily data instead of weekly data (Table 4). The

results confirm those obtained when running the regression on weekly data: individual stock returns are

found to positively co-move with the Eurostoxx index in a highly statistically-significant way (β1 = 0.874).
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(1)
rcarbont (β2) 0.013∗∗∗

(0.003)

rcarbont−1 0.007∗∗∗

(0.002)

rcarbont−2 0.007∗∗

(0.002)

rcarbont−3 0.002
(0.002)

rcarbont−4 0.001
(0.002)

CIpaidt × rcarbont -0.596∗∗∗

(0.163)

CIpaidt × rcarbont−1 0.221
(0.142)

CIpaidt × rcarbont−2 -0.086
(0.139)

CIpaidt × rcarbont−3 -0.178
(0.206)

CIpaidt × rcarbont−4 -0.156
(0.246)

CIfreet × rcarbont -0.064
(0.110)

CIfreet × rcarbont−1 0.228
(0.206)

CIfreet × rcarbont−2 -0.188
(0.105)

CIfreet × rcarbont−3 -0.117
(0.158)

CIfreet × rcarbont−4 -0.003
(0.157)

Eurostoxx Return 0.941∗∗∗

(0.020)

Gas Return 0.016∗∗∗

(0.003)

Oil Return 0.000
(0.006)

Electricity Return 0.001
(0.003)

N 139,744
Industry FE ✓

Country/Month FE ✓

Clustered SE Firm
R2 0.223
Adj. R2 0.209
Standard errors in parentheses
Independent variable is the stock return in all cases
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Permanence of the effect
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Figure 12: Significance of lagged carbon price returns as presented in Table 3. The chart in the middle

(βpaid
3 ) shows that high carbon cost-stocks underperform in weeks when carbon prices rise and do not revert

their relative losses in subsequent weeks - the effect is permanent.
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Only the parameters for oil, gas, and electricity price returns differ. Concerning the role of carbon prices, an

increase in the carbon price is found to coincide on average with a small but highly statistically significant

increase in stock prices (β2 = 0.007). On daily data too the stock price-carbon price relationship is found to

negatively depend on the paid carbon intensity of the firm (βpaid
3 < 0) while the free carbon intensity has no

statistically significant impact.

Regulatory update events

We further conduct an event study using the EU ETS regulatory update series identified by Känzig (2021),

which we extend up until end-2021. Only “regulatory update events that were specifically about changes to

the supply of emission allowances in the European carbon market and do not include broader events such

as outcomes of Conference of the Parties (COP) meetings or other international conferences” are included

in that time series.25 It is further shown to have no serial correlation and that macroeconomic and financial

variables have no power in forecasting the series. We perform this event study because, as Känzig (2021)

writes, “reverse causality of the state of the economy can be plausibly ruled out because it is known and

priced prior to the decision and unlikely to change within the tight window.”

In order to see whether the relationship described in section 4.3 is also observed on dates with regulatory

update events, we estimate the specification of equation (9) below:

rstocki,t = β1r
index
t + [β2 + β

free
3 CIfreei,Y + βpaid

3 CIpaidi,Y ] r
carbon
i,t × st + +... (9)

where st is a dummy variable indicating whether on the day t a regulatory update took place. The

estimates are reported in Table 4 and show that the relationship holds on regulatory update days. Specifically,

on those days, a carbon price increase is found to coincide on average with a small but highly statistically

significant decrease in stock prices (β2 = −0.012), and the relationship is also found to negatively depend on

the paid carbon intensity of the firm (βpaid
3 = −0.752). The free carbon intensity still has no statistically

significant impact.

Finally, we disentangle the nature of the regulatory update events and examine whether the type of

regulatory change matters when it comes to the carbon price-stock price relationship. For that we estimate

equation (10) below:

rstocki,t = β1r
index
t + β2 × r

carbon
i,t × st + [β

free
3 CIfreei,Y + βpaid

3 CIpaidi,Y ] r
carbon
i,t × stypet + ... (10)

here stypet is a dummy variable that can take three values: “no update”, “free” (when the regulatory

update on that day concerns the allocation of free allowances), and “price” (when the regulatory update has

an impact on the supply and demand of auctioned allowances26).

The estimates are reported in Table 4. The carbon price-stock price relationship is found to depend on

the paid carbon intensity of firms on days with no regulatory update (βpaid
3 = −0.271) and even more so on

25We collect 89 update events covering the years 2013-2021.
26All regulatory updates on auctions, caps and the Market Stability Reserve are subsumed under this category.
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days with regulatory updates impacting the allowance price (βpaid
3 = −0.687). What is remarkable is that

– for the first time in all the regressions presented in this paper – the free carbon intensity impacts the

carbon price-stock price relationship, but only on days with regulatory updates concerning free allowances

(βfree
3 = −0.912). On these days, if a regulatory update amounts to a reduction in free allowances, the

carbon price is expected to rise on the back of higher demand in the auctions. Firms with high free carbon

intensities are expected to have to purchase more allowances and therefore face higher costs. It is therefore

intuitive to see their stock prices decline over proportionally.

These results are consistent with stock markets incorporating regulatory news in firm valuations in a

very sophisticated manner.

5 Discussion

5.1 Conclusions

Using a novel dataset of stock prices and carbon intensities of 338 European companies between 2013 and

2021, we demonstrate a strongly statistically significant relationship between carbon price changes and stock

returns. Crucially, this relationship depends on firms’ paid carbon intensity: the higher the carbon costs

a firm faces, the poorer its stock performance during the periods of carbon price increases. Firms’ total

emissions however do not matter beyond the paid carbon intensity.

Taking a closer look at the sensitivity of the carbon price-stock price relationship to a firm’s carbon

intensity, we find that a firm facing carbon costs of 10% of its revenue would see its stock price decline by

0.05% on average when carbon prices rise by 1%. Over the entire observation period, stocks of firms with

paid carbon intensities exceeding 1.8% decline on average when the price of carbon increases. Conversely,

firms paying less than 1.8% of their revenue for carbon allowances would see their stock price rise. The fact

that the carbon price positively correlates with the stock price of a firm with zero carbon intensity might

seem surprising at first. Indeed, as the firm faces no carbon costs, one could expect it not to be impacted

by carbon prices at all, neither positively nor negatively. However, in markets with inelastic demand, where

companies can pass on carbon costs to consumers (see, e.g. Fabra & Reguant, 2014 and Sijm et al., 2006 on

electricity markets), an increase in carbon costs will result in a higher market price and therefore a windfall

profit for low-carbon firms. This is consistent with a stock price increase of these firms. Other authors, such

as Bushnell et al. (2013) draw similar conclusions. The stylized model presented in section 4.1 captures this

effect in term [A] of equation (3).

When studying the relationship between stock prices and carbon prices on sub-samples of our dataset, we

find that it is driven by those segments in which firms face high carbon costs. When considering industries,

the relationship is found in the electricity sector (where free allowances were phased out in 2013 and paid

carbon intensities are correspondingly high) but not in other industries where carbon intensities are much

lower. When considering sub-periods, we can confirm the relationship in recent years (carbon prices have

taken off in 2018) but not in the previous period in which low carbon prices led to lower paid carbon
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(1) (2) (3)
Full Sample Update dates Update Dummy

rcarbon (β2) 0.007∗∗∗

(0.001)

noupdate × rcarbon
(β2 for st = 0) 0.009∗∗∗ 0.009∗∗∗

(0.001) (0.001)

update × rcarbon
(β2 for st = 1) -0.012∗∗∗ -0.012∗∗∗

(0.002) (0.002)

CIpaid
× rcarbon (βpaid

3 ) -0.288∗∗

(0.099)

noupdate ×CIpaid
× rcarbon

(βpaid
3 for st = 0) -0.273∗ -0.273∗

(0.109) (0.109)

update ×CIpaid
× rcarbon

(βpaid
3 for st = 1) -0.756∗∗∗

(0.199)

freealloc ×CIpaid
× rcarbon

(βpaid
3 for st = free ) -1.181

(0.904)

price ×CIpaid
× rcarbon

(βpaid
3 for st = price) -0.695∗∗∗

(0.204)

CIfree
× rcarbon (βfree

3 ) -0.116
(0.077)

noupdate ×CIfree
× rcarbon

(βfree
3 for st = 0) -0.119 -0.119

(0.091) (0.091)

update ×CIfree
× rcarbon

(βfree
3 for st = 1) -0.163

(0.094)

freealloc ×CIfree
× rcarbon

(βfree
3 for st = free) -0.909∗

(0.413)

price ×CIfree
× rcarbon

(βfree
3 for st = price) -0.059

(0.086)

Eurostoxx Return 0.872∗∗∗ 0.871∗∗∗ 0.871∗∗∗

(0.018) (0.018) (0.018)

Gas Return -0.000 -0.000 -0.000
(0.001) (0.001) (0.001)

Oil Return 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)

Electricity Return 0.004∗∗ 0.004∗∗ 0.004∗∗

(0.001) (0.001) (0.001)
N 679,295 679,295 679,295
Industry FE ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓

Clustered SE Firm Firm Firm
R2 0.144 0.144 0.144
Adj. R2 0.141 0.141 0.141

Standard errors in parentheses
Independent variable is the stock return in all cases
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Results on daily data
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intensities. Finally, the relationship is confirmed only in the group of countries with high-paid carbon

intensities (including Poland, Greece, Czechia, and Germany).

Several reasons can explain why the relationship is not observable in all sub-samples. First, the carbon

costs of companies from most industries are still relatively low as a share of companies’ revenues (the median

in our sample remained close to 0% even in 2018-2021 when the price of carbon increased significantly).

Hence, at this stage, investors and analysts may simply disregard corporate carbon costs for most firms.

Second, even for those firms for which carbon costs are not entirely negligible, the information about the

actual corporate carbon costs is published at a yearly frequency with a significant time lag and is not

straightforward to compile. It might therefore not be available to most market participants. Third, our

estimates of carbon costs are subject to some uncertainty. This is driven on the one hand by the lack of

information on the exact timing of allowances purchases as well as on firms’ hedging strategies against carbon

price fluctuations via derivatives. On the other hand, some uncertainty stems from the fact that we only

take direct carbon costs into account as our dataset does not capture costs from firms’ purchased inputs,

such as electricity.27

Finally, we also studied the impact of free emissions (those covered by free allowances) and find that

they nearly never affect the relationship between stock prices and carbon prices. One could have expected

stock markets to also consider free emissions, for instance in anticipation of their future inclusion in the EU

ETS. Within the setting studied in this paper, however, only taxed emissions play a role in how stock prices

react to carbon prices. There is only one instance where the free carbon intensity was found to significantly

change the explored relationship, namely on the days of regulatory updates affecting the free allocation of

allowances. Should the gradual phasing out of free allocation continue together with the broadening of the

sectors covered by the EU ETS, more frequent regulatory updates regarding free allocation could lead to the

free carbon intensity becoming a more important variable for investors.

The carrot and the stock

We have shown that – controlling for the overall stock market, energy prices, industries, and country-specific

business cycles – stocks of firms with high carbon costs underperform in weeks where carbon price increases.

While this result does not establish a causal relationship, there is theoretical ground to assume that

changes in the carbon price are the ones driving the carbon cost-dependent under-performance of stock

prices and not the relative performance of stock prices in our sample impacting the European carbon price

or firm’s carbon intensity.28 The results of the event study using regulatory updates point to a stronger

27ETS allowances need to be purchased for the so-called “Scope 1” emissions only, i.e. those that are physically emitted by

the firms’ activities. “Scope 2” (energy-related) and “Scope 3” (induced) emissions are not considered. However, an increase

in carbon prices is expected to also trigger an increase in costs of purchased products (such as electricity) and thus depress a

firm’s value.
28Investors taking carbon costs into account when valuing stocks would entail rcarbon ⇒ rstock. Once the overall stock

market, energy prices, industries, and country-specific business cycles are controlled for, rstock ⇒ rcarbon seems implausible.

Finally, there is no reason why rstock ⇒ CIpaid. The number of controls and the robustness of the result under different
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and more statistically significant relationship between stock performance and carbon returns on days of ETS

regulatory changes. This evidence gives us additional ground to view carbon price changes as one of the

factors influencing stock performance and not the other way around. By assuming that carbon returns affect

stock returns and do so differently depending on the paid carbon intensity of the firms, stock markets can

be considered to discriminate carbon-intensive firms in the face of a carbon price increase.

This would provide for a quantifiable incentive channel for shareholders and management to decarbonize

firms’ operations, a mechanism via which high-emitters are punished and low-emitters rewarded in terms

of stock price changes – a carrot and a stick. Indeed, under any assumed path of increasing carbon prices,

lowering carbon costs by reducing greenhouse gas emissions would result in a measurable financial upside

for shareholders which can be weighed against the cost of decarbonization. This would also apply to firms’

management team, whose remuneration package is often indexed on their employer’s stock price performance.

5.2 Policy implications

We argue that, from the perspective of the stock-market incentive channel, there is room for more stringent

carbon pricing in the European Union. Higher carbon costs for firms would strengthen the incentive to

decarbonize and increase the EU ETS’s impact as a climate change mitigation tool, while not endangering

financial stability.

Strengthening the decarbonization incentive

Our results indicate that stock price performance serves as an incentive channel for shareholders of highly

polluting companies to decarbonize their firms’ operations. Any policy leading to higher carbon costs for

emitting firms will tend to strengthen this incentive.

Higher carbon costs for firms within the EU ETS can be achieved in three ways. First, by making sure

the price of allowances continues to rise. While in a cap-and-trade system direct price control is impossible,

strengthening the Market Stability Reserve for instance, or introducing an explicit price floor (Ohlendorf et

al., 2022) would have such an effect. Second, by phasing out free allowances. This could be done quickly for

domestic air travel without impact on competitiveness and gradually for the manufacturing sector alongside

the introduction of a carbon border adjustment. Third, by including further sectors in the EU ETS: currently,

heating, transport, agriculture, and waste management are largely excluded from the scheme. Higher carbon

prices are expected to play a bigger role than the phase-out of free allowances. Indeed, if the volume of

emissions and the price of carbon stay at their current level while the free allocation of allowances drops

to zero, the relative carbon costs in industries like mining and chemicals will remain below 1% of revenue,

which might be insufficient for the stock market channel to become much stronger.

If the carbon-related costs rise across sectors, we expect this factor to be viewed as increasingly important

by investors. Our analysis shows that the impact of carbon prices on stock performance was most pronounced

specifications reduce the likelihood of a common driver of rstock and rcarbon.
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where carbon costs were highest. This could strengthen the incentive channel in a non-linear way.29

Mitigation: transparency vs. carbon pricing

This paper illustrates the fact that high-quality, reliable, and comparable data on firms’ carbon intensity is

not always sufficient to ensure that financial markets contribute to climate change mitigation. Indeed the

EU ETS provides an exceptional setting in which firms’ audited emissions and carbon costs are published

since 2005.

However, we show that in most cases stock markets do not consider firms’ total emissions when determin-

ing the impact of carbon price changes on stock prices: only those emissions for which firms need to pay do

matter 30. In this setting, stock markets can contribute to channeling private investments to lower-emitting

firms using high-quality emissions data, but only in conjunction with a carbon pricing scheme.

Financial stability

Finally, given the magnitude of the carbon-price impact on stock prices, we argue that the aggregated

financial stability risk for stocks from higher carbon prices appears to be limited at this stage.

Indeed, when considering the entire studied period, most firms’ stock prices increase when carbon prices

rise. For a firm with carbon costs representing 10% of revenues, an increase in carbon prices of 1% is linked

with a stock price decrease of 0.05%. While this impact is robust and, when accrued over time, can lead

to share prices diverging (carbon prices have increased by over 300% in 2020-2021), barring a tipping point

or major non-linearity, this relationship does not seem to indicate that a further increase in carbon costs

will trigger a widespread stock market crash. Indeed, in recent years, according to the estimated model,

the average impact of a 1% rise in carbon prices on stocks of firms in our sample would be no more than

-0.003%.31

The results presented in this paper are also applicable for the assessment of carbon price-related transition

risk, i.e. the risks to financial institutions “related to the process of adjustment towards a low-carbon

economy” (BCBS, 2021). The specifications and estimates presented in this paper can be used when modeling

the impact of rising carbon prices on stock portfolios, for instance in climate stress tests.
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31Average of the light blue distribution (2018-2021) on Figure 11
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A Appendix

A.1 Orbis and EU ETS data matching

We were completing the following steps when matching the EU ETS data on emissions allowances with the

data from corporate financials in Orbis:

I. Matching the installations with specific companies. Prior to the actual matching exercise, we have taken

several steps to aggregate the raw EUTL data. Each installation within the EU ETS is represented

by an operator-holding account. For each account, the EUTL provides a name of a firm which we

here refer to as the account holder. An account holder can be related to several installations. The

first step in dealing with disaggregated EUTL data was to merge installations by the account holder

and thus aggregate the data on emission allowances at the account holder level. Account holders were

subsequently matched with specific companies via Orbis using the account holder’s name, company

identification number, and address. The outcome of the first step is thus a database including the

EUTL data on allocated and surrendered emission allowances and the key financial data from Orbis

for each account holder.

II. Identifying publicly quoted parent companies. As a second step, we identify publicly quoted companies

controlling the account holders from our database. We rely on the Orbis database to complete this

task. In many cases, the ownership structure of the account holders from our list did not include

publicly traded companies. Such account holders were excluded from the final sample as there are no

stock prices for them to be used as a dependent variable in further analysis. In a few cases, account

holders from our list were linked to more than one quoted company. In such cases, we used for further

analysis the quoted company that was the nearest to the account holder in the ownership chain. We

refer to such quoted companies as “lowest traded owners” (LTO). We decided to focus on the lowest

and not the highest traded owner because the carbon costs are more likely to affect companies’ stock

prices more directly related to the specific installations generating CO2 emissions. These lowest-traded

owners constitute the companies included in our sample. The stock prices of these companies were

collected using Yahoo Finance.

III. Consolidating account holders belonging to the same parent company. Since in our regression analysis

we use the lowest traded owners’ stock price as a dependent variable, the EUTL data on purchased

emission allowances were aggregated at the lowest traded owner level. This eventually allowed us to

obtain a proxy for the total amount of purchased emission allowances for each lowest-traded owner.

These steps can be summarized in Figure A.1.
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Figure A.1: Data gathering scheme

A.2 Theory derivation

Starting from the profits,

πt = Pt(qt, q
o
t )qt
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we start by computing the derivative with respect to the carbon price:
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We take the above equation at the profit-maximizing equilibrium, where:

∂π∗t
∂qt
= Pt + P

′

tq
∗

t −C(ω) − rtτt = 0. (12)

Inserting equation (12), the first term in (11) is equal to zero. Further assuming that a change in carbon

prices today leads to a parallel shift in the carbon futures curve (dτt/dτ0 = 1), the second term is also equal

to zero. Finally, assuming that other effects do not depend on the carbon price (dδt/dτ0 = 0), we obtain:

dπ∗t
dτ0
= P ′t

dqo∗t
dτ0

q∗t −
∂C

∂ω

∂ω

∂τ0
q∗t − (rtq

∗

t − Ft) (13)

where π∗ and q∗ are consistent with profit maximization.
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Finally, the impact of an exogenous carbon price shock on the stock price is given by:

dS

dτ0
= ∑

t

bt
dπ∗t
dτ0
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t

btP ′t
dqo∗t
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q∗t −∑
t

bt
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t − Ft)

A.3 Industry-subperiod estimates

We report here the estimates of our standard regression specifications for two sub-periods separately for each

industry. The results obtained for the full sample are confirmed for the electricity sector. We see that the

relationship between the carbon price and electricity companies’ stock performance becomes carbon intensity

dependent in the second sub-period (βpaid
3 < 0). When it comes to chemicals, mining, or other sectors the

relationship between the carbon price changes and stock performance is positive and statistically significant

in the first sub-period but it is not affected by the firm’s carbon intensity. We find almost no statistically

significant relationships in the second sub-period for these industries.
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(1) (2) (3) (4) (5) (6) (7) (8)
2013-2017

(Electricity)

2018-2021

(Electricity)

2013-2017

(Chemical)

2018-2021

(Chemical)

2013-2017

(Mining)

2018-2021

(Mining)

2013-2017

(Other)

2018-2021

(Other)

rcarbon (β2) 0.032∗∗∗ 0.017 0.016∗ -0.011 0.032∗∗∗ -0.039 0.013∗∗∗ -0.002

(0.007) (0.015) (0.007) (0.010) (0.008) (0.022) (0.004) (0.006)

CIpaid × rcarbon (βpaid
3 ) 0.032 -0.615∗∗ 3.124 0.938 0.263 -2.134 -5.655 0.711

(0.508) (0.214) (2.814) (1.535) (0.142) (10.760) (3.546) (2.850)

CIfree × rcarbon (βfree
3 ) -0.226 -0.134 -3.521∗∗ -0.494 0.061 -1.123 -1.142 0.320

(0.287) (0.081) (1.289) (1.710) (0.087) (0.920) (1.081) (0.700)

Eurostoxx Return 0.619∗∗∗ 0.773∗∗∗ 0.851∗∗∗ 0.992∗∗∗ 0.846∗∗∗ 1.104∗∗∗ 0.832∗∗∗ 1.022∗∗∗

(0.060) (0.057) (0.038) (0.048) (0.075) (0.061) (0.030) (0.034)

Gas Return -0.005 0.014 -0.011 0.022∗∗ -0.020 0.007 -0.015∗ 0.024∗∗∗

(0.012) (0.009) (0.009) (0.008) (0.013) (0.011) (0.006) (0.005)

Oil Return -0.003 -0.005 0.003 0.007 0.152∗∗ 0.150∗∗∗ -0.011 -0.024∗∗

(0.012) (0.013) (0.014) (0.011) (0.041) (0.039) (0.007) (0.008)

Electricity Return 0.007 -0.009 -0.006 0.001 -0.015 0.047∗∗∗ -0.009 0.003

(0.010) (0.009) (0.008) (0.007) (0.024) (0.011) (0.005) (0.006)

N 10,283 8,717 15,515 13,693 6,428 5,237 46,992 40,306

Industry FE − − − − − − ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered SE Firm Firm Firm Firm Firm Firm Firm Firm

R2 0.199 0.258 0.256 0.331 0.249 0.330 0.152 0.232

Adj. R2 0.132 0.200 0.205 0.289 0.154 0.247 0.129 0.212

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.1: Results by subperiods and industry
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A.4 Robustness checks

A.4.1 Controls Selection

We check further the robustness of our estimates to the choice of different controls that may vary at the

industry, country, firm and monthly level (see Table A.2).

A.4.2 Clustering of standard errors

The results are found to be robust to all possible clusterings of standard errors (i.e., at the industry, firm,

and country level, see Tables A.3, A.4, A.5).32

32Note: whenever the standard errors are clustered at the industry level, estimates for the individual industries cannot be

obtained.
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(1) (2) (3) (4) (5) (6) (7)

rcarbon (β2) 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ -

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (.)

CIpaid
× rcarbon (βpaid

3 ) -0.517∗∗ -0.566∗∗∗ -0.385∗ -0.458∗ -0.424∗∗ -0.372 -0.574∗∗∗

(0.163) (0.170) (0.167) (0.187) (0.163) (0.224) (0.161)

CIfree
× rcarbon (βfree

3 ) -0.015 -0.044 -0.010 -0.016 0.018 0.007 -0.030

(0.098) (0.097) (0.100) (0.097) (0.107) (0.147) (0.100)

Eurostoxx Return 0.911∗∗∗ 0.911∗∗∗ 0.911∗∗∗ 0.913∗∗∗ 0.935∗∗∗ 0.915∗∗∗ -

(0.021) (0.021) (0.021) (0.022) (0.020) (0.023) (.)

Gas Return 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.006∗∗ 0.017∗∗∗ -

(0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (.)

Oil Return -0.003 -0.003 -0.003 -0.003 0.016∗∗ -0.004 -

(0.006) (0.006) (0.006) (0.006) (0.005) (0.007) (.)

Electricity Return -0.001 -0.001 -0.001 -0.001 0.006∗ -0.001 -

(0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (.)

N 147,171 147,171 147,171 147,171 147,171 147,171 147,171

Industry FE ✓ ✓ ✗ ✗ ✗ ✗ ✓

Country FE ✓ ✗ ✓ ✗ ✗ ✗ ✓

Month FE ✓ ✗ ✗ ✗ ✗ ✗ ✗

Country/Month FE ✗ ✓ ✗ ✗ ✗ ✗ ✗

Industry/Month FE ✗ ✗ ✓ ✗ ✗ ✗ ✗

Country/Industry/Month FE ✗ ✗ ✗ ✓ ✗ ✗ ✗

Firm FE ✗ ✗ ✗ ✗ ✓ ✗ ✗

Firm/Month FE ✗ ✗ ✗ ✗ ✗ ✓ ✗

Week FE ✗ ✗ ✗ ✗ ✗ ✗ ✓

Clustered SE Firm Firm Firm Firm Firm Firm Firm

R2 0.182 0.202 0.202 0.283 0.177 0.360 0.195

Adj. R2 0.188 0.189 0.194 0.175 0.165 0.193

Standard errors in parentheses

Independent variable is the stock return in all cases
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.2: Regression results (multiple FE specifications)
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Full Sample Full Sample Electricity Chemicals Mining Others 2013-2017 2018-2021 High CC Low CC

rcarbon (β2) 0.011∗∗∗ 0.010∗∗∗ 0.031∗∗ 0.005 0.002 0.008∗∗∗ 0.016∗∗ -0.002 0.012∗∗ 0.008∗

(0.002) (0.002) (0.007) (0.006) (0.008) (0.002) (0.004) (0.006) (0.003) (0.003)

CItotal × rcarbon (β3) -0.309

(0.168)

CIpaid × rcarbon (βpaid
3 ) -0.566∗ -0.549∗∗∗ 1.177 0.172 0.135 0.192 -0.860∗∗∗ -0.586∗ -0.241

(0.213) (0.109) (1.214) (0.215) (1.823) (0.257) (0.114) (0.205) (1.122)

CIfree × rcarbon (βfree
3 ) -0.044 -0.151 -0.931 -0.030 0.390 0.091 -0.070 -0.073 0.217

(0.061) (0.092) (1.717) (0.162) (0.629) (0.114) (0.127) (0.041) (0.567)

Eurostoxx Return 0.911∗∗∗ 0.911∗∗∗ 0.706∗∗∗ 0.930∗∗∗ 0.973∗∗∗ 0.941∗∗∗ 0.809∗∗∗ 0.990∗∗∗ 0.920∗∗∗ 0.901∗∗∗

(0.028) (0.028) (0.073) (0.049) (0.059) (0.029) (0.039) (0.025) (0.036) (0.044)

Gas Return 0.016∗∗∗ 0.016∗∗∗ 0.009 0.017∗ 0.008 0.019∗∗ -0.013∗ 0.021∗∗∗ 0.016∗ 0.017∗∗

(0.004) (0.004) (0.006) (0.006) (0.009) (0.006) (0.005) (0.005) (0.006) (0.005)

Oil Return -0.003 -0.003 -0.008 0.002 0.146∗∗∗ -0.023∗∗ 0.006 -0.002 -0.005 0.000

(0.008) (0.008) (0.006) (0.008) (0.038) (0.007) (0.010) (0.010) (0.015) (0.005)

Electricity Return -0.001 -0.001 -0.006 -0.002 0.024∗ -0.002 -0.007 0.004 0.002 -0.004

(0.005) (0.005) (0.009) (0.005) (0.011) (0.005) (0.006) (0.005) (0.008) (0.003)

N 147,171 147,171 19,000 29,208 11,665 87,298 79,218 67,953 78,677 68,494

Industry FE ✓ ✓ − − − ✓ ✓ ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered SE Country Country Country Country Firm Country Country Country Country Country

R2 0.202 0.202 0.230 0.296 0.291 0.198 0.156 0.238 0.179 0.237

Adj. R2 0.188 0.188 0.168 0.250 0.202 0.177 0.140 0.225 0.171 0.216

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.3: Regression results, estimation of equations (4) and (7). Columns correspond to different sub-samples.

46



(1) (2) (3) (4) (5) (6) (7)

Full Sample Full Sample Others 2013-2017 2018-2021 High CC Low CC

rcarbon (β2) 0.011∗ 0.010∗ 0.008 0.016∗∗ -0.002 0.012∗ 0.008

(0.004) (0.004) (0.005) (0.004) (0.006) (0.005) (0.005)

CItotal × rcarbon (β3) -0.309

(0.150)

CIpaid × rcarbon (βpaid
3 ) -0.566∗∗ 0.135 0.192∗∗ -0.860∗∗∗ -0.586∗∗ -0.241

(0.169) (1.909) (0.056) (0.104) (0.163) (1.021)

CIfree × rcarbon (βfree
3 ) -0.044 0.390 0.091 -0.070 -0.073 0.217

(0.091) (0.634) (0.074) (0.170) (0.066) (0.678)

Eurostoxx Return 0.911∗∗∗ 0.911∗∗∗ 0.941∗∗∗ 0.809∗∗∗ 0.990∗∗∗ 0.920∗∗∗ 0.901∗∗∗

(0.048) (0.048) (0.066) (0.042) (0.055) (0.055) (0.047)

Gas Return 0.016∗∗∗ 0.016∗∗∗ 0.019∗∗∗ -0.013∗ 0.021∗∗∗ 0.016∗∗∗ 0.017∗∗

(0.003) (0.003) (0.004) (0.006) (0.004) (0.004) (0.004)

Oil Return -0.003 -0.003 -0.023 0.006 -0.002 -0.005 0.000

(0.015) (0.015) (0.013) (0.015) (0.015) (0.018) (0.011)

Electricity Return -0.001 -0.001 -0.002 -0.007 0.004 0.002 -0.004

(0.003) (0.003) (0.002) (0.005) (0.005) (0.004) (0.003)

N 147,171 147,171 87,298 79,218 67,953 78,677 68,494

Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered SE Industry Industry Industry Industry Industry Industry Country

R2 0.202 0.202 0.198 0.156 0.238 0.179 0.237

Adj. R2 0.188 0.188 0.177 0.140 0.225 0.171 0.216

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.4: Regression results, estimation of equations (4) and (7). Columns correspond to different sub-samples.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Full Sample Full Sample Electricity Chemicals Mining Others 2013-2017 2018-2021 High CC Low CC

rcarbon (β2) 0.009∗∗∗ 0.009∗∗∗ 0.030∗∗∗ 0.004 0.001 0.006 0.014∗∗∗ -0.003 0.011∗∗∗ 0.006

(0.002) (0.002) (0.006) (0.005) (0.008) (0.003) (0.003) (0.004) (0.003) (0.003)

CItotal × rcarbon (β3) -0.282

(0.146)

CIpaid × rcarbon (βpaid
3 ) -0.538∗ -0.548∗ 1.194 0.178 0.328 0.205 -0.830∗∗ -0.563∗ -0.124

(0.217) (0.264) (1.585) (0.476) (1.861) (0.273) (0.280) (0.221) (1.106)

CIfree × rcarbon (βfree
3 ) -0.018 -0.150 -0.879 -0.019 0.499 0.117 -0.051 -0.053 0.284

(0.158) (0.213) (1.677) (0.297) (0.497) (0.188) (0.254) (0.168) (0.444)

Eurostoxx Return 0.914∗∗∗ 0.914∗∗∗ 0.706∗∗∗ 0.930∗∗∗ 0.974∗∗∗ 0.946∗∗∗ 0.809∗∗∗ 0.993∗∗∗ 0.924∗∗∗ 0.902∗∗∗

(0.009) (0.009) (0.022) (0.017) (0.035) (0.012) (0.009) (0.013) (0.013) (0.011)

Gas Return 0.016∗∗∗ 0.016∗∗∗ 0.009 0.017∗∗∗ 0.007 0.019∗∗∗ -0.012∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.017∗∗∗

(0.003) (0.003) (0.006) (0.005) (0.010) (0.004) (0.004) (0.004) (0.004) (0.003)

Oil Return -0.002 -0.002 -0.007 0.003 0.146∗∗∗ -0.022∗∗∗ 0.006 0.000 -0.004 0.001

(0.004) (0.004) (0.008) (0.008) (0.015) (0.005) (0.004) (0.006) (0.006) (0.005)

Electricity Return -0.001 -0.001 -0.006 -0.001 0.025∗ -0.003 -0.006 0.004 0.002 -0.003

(0.003) (0.003) (0.006) (0.005) (0.011) (0.004) (0.004) (0.004) (0.004) (0.004)

N 144,164 144,164 18,950 28,698 11,509 85,007 76,755 67,409 76,746 67,418

Industry FE ✓ ✓ − − − ✓ ✓ ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered SE Robust Robust Robust Robust Robust Robust Robust Robust Robust Robust

R2 0.208 0.208 0.230 0.295 0.292 0.206 0.161 0.243 0.184 0.246

Adj. R2 0.194 0.194 0.169 0.249 0.201 0.184 0.146 0.230 0.175 0.226

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.5: Regression results, estimation of equations (4) and (7). Columns correspond to different sub-samples.
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A.4.3 Timing of purchases

When computing the carbon intensity of firms (see sections 3.2 and 4.3), we multiply the number of allowances

a firm purchases (or receives for free) by the average carbon price of that year. We then normalize the obtained

carbon cost by the firm’s revenue to obtain the carbon intensity, a metric that can be used to compare firms.

By using the average carbon price, we implicitly assume that all firms spread out their purchases evenly

throughout the year.

This assumption is grounded in the fact that the main channel for allowance purchases is public allowance

auctions. These auctions happen every week throughout the year with equal volumes.33 Neither all firms

regularly participate in all auctions, nor do they necessarily purchase the allowances on the spot markets,

many of them purchase allowances using futures, the most traded of which being the December expiry

contract (see Securities & (ESMA), 2022).

The list of all physical allowance transactions which we can access via the EU ETS database (see sec-

tion A.4.5) confirms the high share of non-administrative34 transactions taking place in December, corre-

sponding to the delivery of future contracts, as shown in Figure A.2. Given the dominance of the futures

market, we cannot identify firm-specific purchase patterns using the EU ETS database.

Figure A.2: Market-based transactions happen disproportionally often in December, confirming that firms

purchase allowances using the futures rather than the spot market.

A.4.4 Normalisation variables

In this subsection, we examine the robustness of our estimates to the use of different normalization vari-

ables in carbon intensity calculation. Throughout the paper we used revenue as a normalization factor for

33The auction calendar including volumes is published on the website of EEX the European Energy Exchange in charge of

running the auctions.
34We exclude the allocation of free allowances and the surrendering of allowances.
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equations (6) and (7). Being less affected by the differences in accounting standards than profit, it is a less

biased proxy for the firm size. We now reproduce our core results using market capitalization for scaling

(Table A.6).

The significance and the sign of the coefficients next to commodities returns, Eurostoxx return, and

carbon price return are found to be invariant to the normalization factor selection. The magnitude of the

coefficients is different though. As a result the estimated threshold of carbon intensity above which carbon

price increases penalize the stock price is much higher in this specification than in the main regression (7.3%

of market capitalization versus 1.7% of revenue in the main specification).

We are able to confirm the presence of a statistically significant link between carbon price returns and

stock price dynamics. The magnitude of this link depends on the carbon intensity of the firm, in particular,

its paid component, while the free allocation of allowances is disregarded by investors. The result is robust

to the normalization factor.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Full Sample Full Sample Electricity Chemicals Mining Others 2013-2017 2018-2021 High CC Low CC

rcarbon (β2) 0.010∗∗∗ 0.010∗∗∗ 0.027∗∗∗ 0.004 0.006 0.008∗∗ 0.017∗∗∗ -0.005 0.012∗∗∗ 0.007∗

(0.002) (0.002) (0.007) (0.006) (0.008) (0.003) (0.003) (0.005) (0.003) (0.003)

CItotal × rcarbon (β3) -0.110∗∗

(0.033)

CIpaid × rcarbon (βpaid
3 ) -0.128∗∗ -0.102∗ 0.734 0.402 0.212 0.057 -0.162∗∗∗ -0.135∗∗ 0.172

(0.041) (0.049) (0.764) (1.143) (0.406) (0.114) (0.046) (0.046) (0.283)

CIfree × rcarbon (βfree
3 ) -0.063 -0.124 -0.310 -0.483 0.034 -0.204∗ -0.033 -0.089 0.035

(0.050) (0.101) (0.741) (0.350) (0.148) (0.093) (0.076) (0.147) (0.111)

Eurostoxx Return 0.919∗∗∗ 0.919∗∗∗ 0.727∗∗∗ 0.921∗∗∗ 0.973∗∗∗ 0.952∗∗∗ 0.818∗∗∗ 0.996∗∗∗ 0.929∗∗∗ 0.907∗∗∗

(0.020) (0.020) (0.052) (0.039) (0.062) (0.028) (0.022) (0.024) (0.029) (0.029)

Gas Return 0.016∗∗∗ 0.016∗∗∗ 0.012 0.015∗ 0.009 0.018∗∗∗ -0.015∗∗∗ 0.022∗∗∗ 0.016∗∗∗ 0.016∗∗∗

(0.003) (0.003) (0.006) (0.007) (0.009) (0.004) (0.004) (0.004) (0.004) (0.004)

Oil Return -0.004 -0.004 -0.010 0.000 0.141∗∗ -0.024∗∗∗ 0.003 -0.002 -0.008 -0.001

(0.006) (0.006) (0.009) (0.008) (0.039) (0.007) (0.007) (0.007) (0.009) (0.007)

Electricity Return -0.000 -0.000 -0.008 -0.002 0.023 -0.001 -0.005 0.004 0.003 -0.003

(0.003) (0.003) (0.006) (0.005) (0.012) (0.004) (0.004) (0.004) (0.004) (0.003)

N 142,186 142,186 18,479 28,419 11,197 84,091 76,089 66,097 75,939 66,247

Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clustered SE Firm Firm Firm Firm Firm Firm Firm Firm Firm Firm

R2 0.212 0.212 0.240 0.292 0.289 0.212 0.164 0.248 0.191 0.242

Adj. R2 0.198 0.198 0.177 0.247 0.195 0.191 0.148 0.235 0.183 0.221

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.6: Main regression results, carbon costs normalized by market capitalization
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A.4.5 Allowance inventories

The estimates presented in section 4.3 show that the higher a firm’s yearly carbon bill, the more severely its

stock price is affected by an increase in carbon prices. This is consistent with the view that stock markets

take a firm’s (carbon) costs into account when determining its market value. Fluctuations of a firm’s carbon

costs lead to fluctuations in its valuation.

However, firms could hedge themselves against carbon price fluctuations, either by using derivatives or

by building up inventories of emission allowances to cover their expected emissions over some time horizon.

Anecdotal evidence exists of some firms engaging in the latter (such as the German utility group RWE, see

Flauger & Witsch, 2021). We do not have access to firms’ positions in ETS options and futures but – using

the list of all transactions in the EU ETS database – we could in theory reconstruct all firms’ allowance

inventories up to April 2019.35

Unfortunately, the data quality of the transaction log is poor (for a detailed description see Mahringer et

al., 2021), with the transferring or receiving account of a transaction often missing. In particular, some of

the free allocation transactions cannot be linked to firms, which results in meaningless (negative) inventories.

We can therefore not use the inventory figures in the regression.

Figure A.3: Reconstructed allowance inventory of German utility RWE. Missing data leads to (meaningless)

negative inventory figures.

35The EU transaction log publishes all transactions of physical allowances (that is free allocations, auction, and secondary-

market purchases, sales, and regulatory surrendering of allowances) with a delay of three years. Derivative transactions do

appear only if they lead to the actual delivery of allowances (and are not settled in cash), the time logged would be that of the

allowance delivery not of the derivative trade.
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A.4.6 R&D expenditure

As another robustness check, we also reproduce our estimates conditional on the R&D expenditures of each

firm (Table A.7). Our objective is to examine whether the discovered relationship between carbon price

return and stock price performance holds for highly innovative firms. Firms with higher R&D spending

might be viewed by investors as better able to withstand transition risks. Hence one could assume that

rising carbon costs have a less negative impact on the stock performance of carbon-intensive firms that are

active in R&D. Essentially, we use R&D spending as a proxy for a firm’s innovative capabilities and its

readiness to adjust to the changing environment.

We collect the data on annual R&D expenditure in percent of revenues for the companies included in

our sample using the Orbis database. Unfortunately, the data availability is poor. Only about 44% of the

companies in our sample report positive R&D expenditure, a third have zero R&D expenditure, while the

remaining firms do not report this data at all.

We estimate our core specification on several sub-samples: firms that have R&D equal to zero (column 1

in Table A.7), firms with positive R&D (column 2), and (conditional on observing positive R&D) firms with

R&D expenditure above or below the median (columns 3 and 4). We do not find any statistically significant

result beyond the positive association between stock returns and the Eurostoxx and gas returns. The carbon

price no longer has a statistically significant relationship with the stock prices of firms (regardless of their

carbon intensity) in either of these sub-samples. We attribute this result to the changes in the sample

used for the estimates. Only 12 electricity companies and only half of the companies headquartered in high

carbon intensity countries report positive R&D and can hence be included in the estimates. It is highly

likely that we no longer see statistically significant results because the relationship was particularly strong

for highly carbon-intensive firms (see 4.4) that are now less well represented in the dataset augmented with

R&D expenditure.
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(1) (2) (3) (4)

R&D = 0 Positive R&D R&D below median R&D above median

rcarbon (β2) 0.004 0.008∗ 0.013∗ -0.000

(0.004) (0.004) (0.006) (0.005)

CIpaid × rcarbon (βpaid
3 ) -0.596 0.480 1.529 -0.820

(0.355) (0.735) (2.643) (0.605)

CIfree × rcarbon (βfree
3 ) 0.025 2.290 1.552 8.984

(0.265) (1.387) (1.507) (7.081)

Eurostoxx Return 0.840∗∗∗ 1.018∗∗∗ 1.007∗∗∗ 1.029∗∗∗

(0.032) (0.026) (0.036) (0.035)

Gas Return 0.015∗∗ 0.017∗∗∗ 0.019∗ 0.015∗∗

(0.005) (0.004) (0.008) (0.005)

Oil Return -0.015 0.003 0.017 -0.011

(0.011) (0.008) (0.012) (0.010)

Electricity Return 0.003 -0.002 -0.009 0.004

(0.006) (0.005) (0.008) (0.005)

N 49,015 63,751 31,925 31,826

Industry FE ✓ ✓ ✓ ✓

Country/Month FE ✓ ✓ ✓ ✓

Clustered SE Firm Firm Firm Firm

R2 0.190 0.287 0.271 0.337

Adj. R2 0.158 0.270 0.236 0.311

Standard errors in parentheses

Independent variable is the stock return in all cases

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.7: Results (R&D)
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